Corrigé de l’épreuve définitive de MARS 2000

Exercice 1 :
L’échiquier compte normalement 64 cases (= 8 × 8) dont 32 noires et 32 blanches. Etant donné qu’on lui a enlevé deux cases noires, il ne reste que 30 cases noires et 32 blanches. Un domino recouvre exactement deux cases adjacentes donc une case noire et une blanche. Les 30 dominos posés recouvrent par conséquent 30 cases noires et 30 cases blanches. Les 2 cases restantes sont donc de la même couleur : elles sont blanches.

Exercice 2 :
Voici un exemple parmi d’autres : on considère les prix suivants 1 F et 2 F respectivement convertis à 0,15 € et 0,30 €. La somme des prix convertis est donc égale à 0,45 €. Par contre, la somme des prix 3 F convertie en €uros donne 0,46 €. Les deux méthodes peuvent donc conduire à des résultats différents. (La méthode qui s’applique en réalité est celle qui consiste à faire la somme des prix initialement convertis.)

Exercice 3 :
Dans un premier temps l’observateur plaçait la fente de l’arc supérieur sur une certaine valeur α ; il ajustait ensuite l’inclinaison de l’instrument de façon que les rayons du Soleil arrivent en A ; simultanément, il pointait l’horizon à travers la fente de l’arc inférieur et relevait alors la mesure β.
La hauteur du Soleil au-dessus de l’horizon est obtenue en additionnant les angles α et β.
Remarque : En fait, l’arc de cercle supérieur pouvait se contenter de graduations espacées de 5 à 10 degrés. L’arc inférieur sur lequel la visée était faite pouvait, pour sa part, être agrandi par l’accroissement de son rayon, ce qui avait pour effet d’augmenter le nombre de graduations et donc d’améliorer la précision de la mesure.

Exercice 5 :

<table>
<thead>
<tr>
<th>chiffre</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>nombre de pixels allumés</td>
<td>10</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>17</td>
<td>15</td>
<td>11</td>
<td>17</td>
<td>15</td>
<td>19</td>
</tr>
</tbody>
</table>

Pour chaque chiffre, le nombre de pixels est compris entre 10 et 19.
Pour un entier à deux chiffres, le nombre de pixels allumés est donc compris entre 20 et 38 ; parmi ces entiers, la seule solution est 29 (29 = 14 + 15).

<table>
<thead>
<tr>
<th>nombre</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
</tr>
</thead>
<tbody>
<tr>
<td>nombre de pixels allumés</td>
<td>33</td>
<td>24</td>
<td>28</td>
<td>28</td>
<td>28</td>
<td>31</td>
<td>29</td>
<td>25</td>
<td>31</td>
<td>29</td>
</tr>
</tbody>
</table>

Un entier ayant n chiffres s’affiche avec au maximum 19n pixels et ce nombre est supérieur ou égal à 10^{n-1} ; or pour tout entier n ≥ 3, 19n < 10^{n-1}. 29 est donc la seule solution.

Remarque : Les nombres de la forme "ab"et "ba" sont affichés avec le même nombre de pixels. On peut donc laisser de côté 21 et 31 qui correspondent à 12 et 13 déjà éliminés. Ainsi que 32 après avoir éliminé 23.

Exercice 6 :
Une méthode (qui sera vraisemblablement celles des élèves) consiste à dresser la liste des numéros des soldats rangés dans la 5ème colonne pour chacune des deux dispositions.

On constate alors que **Hocus et Pocus portent les numéros 335 et 665** (numéros communs aux 2 positions ; 5 ne convient pas car aucun des 2 romains n’est en 1ère ligne).

Remarques :
• Par congruence, on y arrive plus vite : les numéros chez Arithmétiques sont de la forme 5 + 30k et ceux chez Calculus de la forme 5 + 33k’ d’où 5 + 30k = 5 + 33k’, par simplification on a 10k = 11k'. Avec k = 11, k’ = 10 et on obtient 5 + 30 × 11 = 335. Avec k = 22, k’ = 20 et on obtient 5 + 30 × 22 = 665.
• On peut proposer aux bons élèves une variante de cet exercice : Hocus, Pocus et Abracadabrus sont dans la 1ère colonne sous le commandement d'Arithméticus et dans la 7ème colonne sous Calculus. Quels sont leurs numéros ?

solution de cette variante : n° 771, 601, 931.
Exercice 8 :
Le polyèdre de Pierre est un **hexaèdre**.

Exercice 9 :

Exercice 10 :
En appliquant successivement dans les triangles MEF puis MEH le théorème de Thalès, on obtient : \[
\frac{AB}{MA} = \frac{MF}{ME} = \frac{MI}{MH} = \frac{x}{1}.
\]
De même (en considérant la hauteur issue de N dans le triangle NEF), on a : \[
\frac{CD}{EF} = \frac{ND}{NF} = \frac{x}{1}.
\]
De \[
\frac{AB}{CD} = \frac{EF}{EF} = \frac{1}{1}.
\]
donc \[
AB = CD.
\]

Exercice 11 :
Les 23 secondes correspondent à la traversée complète de la gare par le train (du début de la locomotive à la fin du dernier wagon) soit la longueur du quai plus la longueur du train. Il faut y enlever les 6 secondes correspondant uniquement à la longueur du train. On a alors 17 secondes pour la longueur du quai de 340 mètres. La vitesse du train est donc \[
v = \frac{340 \text{ m}}{17 \text{ s}} = 20 \text{ m/s} = 72 \text{ km/h}.
\]
Ce peut être un train de marchandise.
La longueur du train est \[d' = 20 \times 6 = 120 \text{ m}.
\]

Exercice 12 :
Notons \(r \) le rayon et \(h \) la hauteur du tas de sable de forme conique.
Volume de sable extrait : \(15 \times (\pi \times (2r)^2 - \pi \times r^2) = 15\pi \times (4r^2 - r^2) = 15\pi \times 3r^2 = 45\pi r^2 \).

Volume du cône : \(\frac{\pi r^2 h}{3} \). Ces volumes sont égaux donc \(45\pi r^2 = \frac{\pi r^2 h}{3} \).

D'où \(45 = \frac{h}{3} \) soit \(h = 135 \) cm.
Albert mesure donc \(135 + 15 = 150 \) cm = **1 m 50**.

Remarque : La hauteur du tas de sable est indépendante du rayon. En fait, si le grand cercle avait un rayon différent du double du petit cercle, la hauteur dépendrait uniquement du rapport des rayons.

Exercice 13 :
Le point E se trouve à l’aplomb du point B du 1\(^\text{er} \) pot. On a : \(AB = e \) et \(AC = R - e - (r - e) = R - r \). D’après le théorème de Thalès, on a :
\[
\frac{EB}{CD} = \frac{EF}{AC} = \frac{e}{R - r}.
\]
D'où \(EB = \frac{eH}{R - r} = \frac{0.5 \times 18}{9 - 5} = 2.25 \) cm.

Pour 10 pots, il y a 9 espaces donc la hauteur des 10 pots est égale à \(18 + 9 \times 2.25 = 18 + 20.25 = 38.25 \) cm.