Exercice 1 – Les polygones d’Antigone – 7 points

\(n \) étant le nombre de côtés du polygone et \(d \) le nombre de ses diagonales, on trouve :
\[n = 6, d = 9 ; \quad n = 7, d = 14 ; \quad n = 8, d = 20. \]
Pour un polygone de \(n \) sommets, on peut tracer de chaque sommet \(n - 3 \) diagonales.

Puisque chaque diagonale contient 2 sommets, on obtient \(\frac{n(n - 3)}{2} \) diagonales.

Le nombre de diagonales augmente avec le nombre de sommets.

Par essais, on trouve qu’un polygone de 15 sommets a 90 diagonales et qu’un polygone de 16 sommets a 104 diagonales. **Un polygone avec 100 diagonales ne peut pas exister.**

Exercice 2 – Décroissance programmée – 5 points

Quelques remarques :
- Les nombres à un chiffre sont seuls sur leur liste ;
- Si on permute les deux chiffres du premier nombre, les nombres suivants et notamment la longueur de la suite ne changent pas.
- ...

Pour 77 on trouve 49 ; 36 ; 18 ; 8.
C’est 77 qui donne la suite la plus longue.

Exercice 3 – Un tour du haut d’essieux – 7 points

Pour un tour, les roues avancent de \(50\pi \) cm, la planche avance sur les essieux de \(10\pi \) cm.
Par référence au sol, la planche avance de \((50\pi + 10\pi) = 60\pi \) cm soit environ 188,5 cm.

Exercice 4 – Tétrathlon – 5 points

Le problème pourra être abordé de plusieurs manières à l’aide de tableaux.
Voici une solution, en appelant les huit équipes A – B – C – D – E – F – G – H :

<table>
<thead>
<tr>
<th>Volley</th>
<th>Foot</th>
<th>Hand</th>
<th>Rugby</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A - B</td>
<td>A - C</td>
<td>A - D</td>
</tr>
<tr>
<td>2</td>
<td>C - D</td>
<td>E - G</td>
<td>C - E</td>
</tr>
<tr>
<td>3</td>
<td>E - F</td>
<td>F - B</td>
<td>F - H</td>
</tr>
<tr>
<td>4</td>
<td>G - H</td>
<td>D - H</td>
<td>B - G</td>
</tr>
</tbody>
</table>

Une autre façon de faire à l’aide d’un tableau à double entrée (proposant une autre répartition) :

<table>
<thead>
<tr>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Volley</td>
<td>Foot</td>
<td>Hand</td>
</tr>
<tr>
<td>B</td>
<td>Rugby</td>
<td>Volley</td>
<td>Foot</td>
</tr>
<tr>
<td>C</td>
<td>Hand</td>
<td>Rugby</td>
<td>Volley</td>
</tr>
<tr>
<td>D</td>
<td>Foot</td>
<td>Hand</td>
<td>Rugby</td>
</tr>
</tbody>
</table>
Exercice 5 – Encerclé – 7 points
Après avoir placé le point A et construit un triangle équilatéral inscrit (bleu), mais sans se soucier qu’il passe par A, on trace un cercle de centre O et de rayon [OA]. Celui-ci coupe le triangle en 6 points, qui auraient été des points A favorables. Il ne reste plus qu’à amener l’un de ces points d’intersection sur A par une rotation de centre O et d’angle adéquat.

La construction est possible pour la partie intérieure du cercle initial formée par la couronne de centre O et de rayons \(r = 3 \text{ cm} \) et \(R = 6 \text{ cm} \).

Exercice 6 – Club des cinq – 5 points
Problème qui peut être approché de différentes manières : mise en équations ou à l’aide d’un graphique.
Si \(x \) est le temps mis par Ahmed, le temps total sera de \(5x + 50 \text{ min} \).
Le fait qu’Ahmed coure 2 fois plus vite qu’Elise se traduit par \(x + 20 = 2x \).
On trouve le temps total \(150 \text{ min} \), soit \(2 \text{ h } 30 \text{ min} \).

Exercice 7 – Smart box – 7 points
Quand la figure est faite, le résultat découle du théorème de Pythagore.
\[a = \sqrt{40}. \quad \text{Le volume de la boîte est : } a^3 \approx 253 \text{ cm}^3 \]

Exercice 8 – Belle échappée – 5 points
Quand le premier coureur arrive au sommet, le deuxième coureur a encore 200 m à faire avant d’arriver au sommet. À une vitesse de 18 km/h, il lui faudra 40 s.
Pour la descente, le premier coureur a alors une avance de 40 s. Si les deux coureurs, après le passage du sommet, mettent chacun le même temps et la même distance pour atteindre la vitesse constante de 70 km/h, ils seront alors toujours séparés par la distance \(70 \times \frac{40}{3600} \approx 0,778 \text{ km} = 778 \text{ m} \).

Exercice 9 – Géolocalisation – 7 points
On cherche l’angle \(\alpha \) pour la longueur de l’arc de 0,1 km, le rayon de la terre étant de 6367 km.
\[0,1 = \frac{2\pi r}{360} \times \alpha \quad \text{d’où } \alpha \approx 0,0009. \quad \text{Le GPS indique une latitude Nord de } 48,7281 \text{ – } 0,0009 = 48,7272^\circ. \]

Exercice 10 – Théorie des cordes – 10 points
Et revoilà Pythagore !
Pour le carré, il y a deux segments de longueur \(\sqrt{2} \) et un côté de longueur 2, le produit est égal à 4.
Pour l’hexagone, il y a deux côtés de longueur 1, deux côtés de longueur \(\sqrt{3} \), et un côté de longueur 2, le produit est égal à 6.
Pour le triangle équilatéral, les deux côtés mesurent \(\sqrt{3} \), le produit est égal à 3.
Conjecture : Pour un polygone régulier de \(n \) côtés inscrit dans un cercle de rayon 1, le produit des longueurs des segments reliant un sommet aux autres sommets est égal à \(n \).
Selon cette conjecture, la valeur du produit correspondant à un chiliagone régulier serait 1 000.
Exercice 11 – Bulles gigognes – 5 points

Le rayon de la première demi-sphère est 6 cm.
Le rayon de la sphère intérieure est noté R, le rayon de la grande sphère est alors 7 cm.
Selon l’énoncé, on a la relation suivante entre les volumes : \(V_7 = V_R + V_6 \).
Il en résulte \(R^3 = 7^3 - 6^3 = 127 \), d’où \(R \approx 5,03 \) cm.
Le diamètre de la bulle intérieure devrait être d’un peu plus de 10 cm.

Exercice 12 – Aire de repos – 7 points

Chaque hexagone est formé de 6 triangles équilatéraux de même dimensions que les faces triangulaires. La probabilité que la mouche se pose sur une face hexagonale est: \(\frac{4 \times 6}{4 \times 6 + 4} = \frac{24}{28} = \frac{6}{7} \).

Exercice 13GT – Essuie tout ? – 10 points

Le quadrilatère ADFG est un carré de 0,7 m de côté.
Le triangle ADE est équilatéral.

Le dessin suivant explique le calcul de l’aire balayée :

\[
0,5 \times \pi \times 0,7^2 + 0,7^2 = \frac{1}{6} \times \pi \times 0,7^2 - \left(\frac{1}{6} \pi \times 0,7^2 - \frac{0,7 \times \sqrt{3}}{2} \times 0,7 \right) = 0,7^2 \left(\frac{\pi}{6} + 1 + \frac{\sqrt{3}}{4} \right) = 0,9587
\]

L’aire de la surface balayée est d’un peu moins de 1 m² (0,9587 m²).
Le constructeur ne retiendra pas la proposition d’Éric, car une grande partie au centre du pare-brise n’est pas balayée.

Exercice 13Pro – Manon du puits – 10 points

On a une aire totale de 14 400 m² et on trouve en utilisant le logiciel une aire de 2 400 m² pour le terrain de Manon. Ce qui fait donc 6 enfants : une fille et 5 garçons. **Manon a donc 5 frères.**